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Abstract. We investigate an ensemble of systems formed by a ring enclosing a magnetic flux.
The ring is coupled to a side stub via a tunnelling junction and via Coulomb interaction. We
generalize the notion of level hybridization due to the hopping, which is naturally defined only
for one-particle problems, to the many-particle case, and we discuss the competition between
the level hybridization and the Coulomb interaction. It is shown that strong enough Coulomb
interactions can isolate the ring from the stub, thereby increasing the persistent current. Our
model describes a strictly canonical system (the number of carriers is the same for all ensemble
members). Nevertheless for small Coulomb interactions and a long side stub the model exhibits
a persistent current typically associated with a grand canonical ensemble of rings and only if the
Coulomb interactions are sufficiently strong does the model exhibit a persistent current which
one expects from a canonical ensemble.

1. Introduction

Hybridization of levels or elementary excitations is encountered in many problems of physics
[1–6] and chemistry [7–9] in which two weakly coupled subsystems interact with one
another. In this work we are interested in the hybridization of electronic levels and in
particular in the case in which a passage through the hybridization point is associated with
the displacement of charge in real space. If hybridization invokes the transfer of charge
between two weakly coupled systems, the Coulomb interaction can be expected to play
a dominant role: the charge transfer is permitted only if it is associated with a charge
distribution which exhibits a smaller interaction energy than the original configuration. If
this is not the case the Coulomb interaction can be expected to suppress the hybridization.

To investigate this question we consider a simple model system shown in figure 1. A
ring pierced by an Aharonov–Bohm flux [10] is weakly coupled to a side branch [11]. Of
interest are the processes of charge transfer between the ring and the stub and their effect
on the persistent current. The simple model shown in figure 1 permits us to investigate the
interplay between highly mobile electron states and states in which the electron is localized.
In this model, a state in which the electron is predominantly in the ring is very sensitive
to the flux and provides a strong contribution to the persistent current, whereas a state in
which the electron is predominantly localized in the stub is nearly insensitive to a variation
of the flux. In the absence of Coulomb interaction the hybridization of these two types
of state leads to a small persistent current. If now the Coulomb interactions are switched
on, transfer of charge into and out of the localized states is generally not energetically
favourable. As a consequence the model exhibits an increased persistent current in the
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presence of Coulomb interaction. For a sufficiently strong Coulomb interaction the presence
of the side branch is irrelevant; the persistent current is that of a loop without a side branch.
Thus the larger persistent current can be viewed as a consequence of the suppression of
hybridization of highly mobile states with localized states. It is well appreciated that many-
ring experiments [12] as well as experiments on single metallic diffusive rings [13] yield a
value for the persistent current which is much larger than predicted by theories which neglect
interactions. In contrast, the measurements on single ballistic semiconductor rings [14] seem
in accord even with the predictions of non-interacting theories. Possibly, discussions of the
persistent current in the absence of interactions find a very small value for the current,
since hybridization of levels is not inhibited. In the absence of interactions, arbitrary charge
distribution patterns are permitted. If, as is shown in this work, Coulomb interactions can
effectively inhibit level hybridization of flux-sensitive states with flux-insensitive localized
states, this might offer a mechanism which permits the much larger currents observed in
experiments and found in discussions which take Coulomb interactions into account [15].
The discussion presented here is limited to the simple example shown in figure 1 and does
not address the case of metallic diffusive systems. We point out, however, that the work
of Pascaud and Montambaux [16], which considers metallic diffusive conductors with a
geometry similar to the one of interest here, gives results which are in accord with the
findings reported below.

s

φ
C

Lr

L

Figure 1. A ring pierced by a fluxφ and coupled to a (finite-length) side stub. The triangle
represents the three-way tunnelling junction and the Coulomb interaction is taken into account
via the capacityC.

The model system, proposed in [11], has been analysed in a number of works. Reference
[11] treated interactions on the Hartree level in a random-phase approximation. A discussion
which takes the effect of charge quantization in the charge transfer explicitly into account
and treats interactions within a quantum coherent charging model was subsequently provided
by Stafford [17, 18] in collaboration with one of the authors. A computational investigation
in which interactions are treated in a Hubbard-like model is provided by Andaet al [19].
Without interactions, the geometry of figure 1 represents an elementary system which has
also found some interest [20]. There are a number of closely related geometries. First
instead of a ring and a side branch one can investigate two coupled rings as has been
done by Canaliet al [21]. Alternatively, two quantum dots in parallel [22] or in series
[6, 23–26], usually attached to leads to investigate transport, have been considered. A
system very similar to ours, with the side stub replaced by a quantum dot, is investigated
in [17, 18]. These authors also treat the case in which the quantum dot is incorporated into
one of the arms of the ring and where the dot and ring are each separately coupled to a
gate. Throughout, we focus on the closed system of figure 1 in which the level spectrum
is discrete. If the stub attached to the ring is not closed but connected to a reservoir [27],
we have an open grand canonical system in which the spectrum of the wire connecting the
reservoir and the ring is continuous. Effects of Coulomb charging in such models have
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been discussed by Beenakkeret al [28] and by Moskalets [29]. Charge transfer between a
Luttinger liquid ring and a reservoir is discussed by Sandström and Krive [30] and Krive
et al [31].

The purpose of the present work is to extend the discussion of [17, 18] which focused on
quantum coherent resonant charge transfer between subsystems to the case of off-resonant
charge transfer. The main difficulty in further advancing the notions put forward above is
that level hybridization is a single-particle concept. Thus we can only compare the different
properties of the interacting system with those of the non-interacting system and show that
the signatures of level hybridization encountered in the non-interacting system disappear
with increasing interaction strength. To demonstrate this it is necessary to investigate charge
transfer not only under resonant conditions but over a wide parameter range of the model.
Furthermore, it is necessary to consider an ensemble of systems rather than a single system.
It is well known that the size of the persistent currents depends sensitively on the ensemble
considered [32, 33]. The present model, although it is strictly a canonical one, since the
overall charge is conserved, nevertheless, as far as the persistent current is concerned, shows
aspects usually associated with a grand canonical ensemble in the limit of weak interactions
and for a sufficiently long stub.

2. The model

We consider the following model. A ring is coupled to a side stub via particle hopping
and via electrostatic energy. In the absence of coupling between the ring and the stub both
subsystems are perfect, disorder-free conductors. The energy levels of the ring are denoted
by ε(r)n (φ). They are periodic in the fluxφ with period φ0 = hc/e. The eigenstates of
the stub are extended along its entire length and their energies are denoted byε(s)n . For
simplicity, the electrons are considered as spinless. We introduce the operatorsâ

†
i which

create an electron in statei of the ring and the operatorŝb†j which create an electron in

the stub. The Hamiltonian is the sum of the kinetic energyK̂ of the electrons in the ring
and the stub, the hopping energy0̂ and the Coulomb energŷHC . With the energies and
operators introduced above, we have a kinetic energy

K̂ =
∑
i

ε
(r)
i (φ)â

†
i âi +

∑
j

ε
(s)
j b̂

†
j b̂j (1)

and a coupling energy

0̂ =
∑
i,j

(tij â
†
i b̂j + HC). (2)

The one-particle spectraε(r)i and ε(s)j of the ring and the stub are given by the spectra of
the free particle. If the particle numbersNr in the ring andNs in the stub are large, the
spectra may be linearized. Denoting the velocity of the topmost occupied state in the stub
by v(s)F , we find for a stub of lengthLs a level spacing

1 = πh̄v
(s)
F

Ls
. (3)

We characterize the spectrum of the ring of circumferenceLr by the widthw of the levels
which they obtain as a function of flux. For a ballistic ring in which the topmost state has
a velocityv(r)F , the level width is given by

w ≡ |ε(r)Nr (φ0/2)− ε(r)Nr (0)| =
πh̄v

(r)
F

Lr
. (4)
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Below we frequently use1 andw to characterize the spectrum of the system.
The Coulomb energy is taken into account with the help of a geometrical capacitance

C and is obtained as follows. TheNr electrons on the ring andNs electrons on the stub
are held in place by an ionic background chargeeN+r on the ring andeN+s on the stub. We
consider a system that is overall charge neutral and, therefore,

N = Nr +Ns = N+s +N+r .
The Coulomb energy of these charges is

EC = (1/2)[(Nr −N+r )eUr + (Ns −N+s )eUs ].
Relating the charge imbalanceQ = e(Nr − N+r ) to the potential differenceUr − Us via
the geometrical capacitanceC, Q = C(Ur −Us), and using the charge-neutrality condition
gives

ĤC = e2

2C
(N̂r −N+r )2 N̂r =

∑
i

â
†
i âi . (5)

Note that this energy is equal to

ĤC = e2

2C
(N̂s −N+s )2.

Below we discuss various simple limits of this Hamiltonian.
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Figure 2. Part of the single-particle energy spectrum of a ring connected to a stub (full lines).
The dashed lines represent the spectra of the uncoupled ring (levels 21 and 22) and stub (levels
30 to 33), respectively. The spectrum of the Hamiltonian including tunnelling was calculated
by matrix diagonalization with a level widthw in the ring, a level spacing1 = 2w/3 in the
stub and a coupling energy|t | = 0.1w.

For vanishing Coulomb interaction (e2/2C = 0) the problem reduces to a one-particle
problem which we discuss now. In the absence of hopping between the ring and the
stub (0̂ = 0), the spectrum consists of the flux-sensitive spectrum of a perfect ring and a
completely flux-insensitive spectrum of the stub. This spectrum is indicated by broken lines
in figure 2. From their flux dependence the ring states behave like extended states, whereas
the stub states behave like completely localized states. If we now turn on the coupling
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between the stub and the ring, the states of these two subsystems hybridize. Instead of
an intersection of two nearby levels, a gap of the order of|t | opens up. The solid lines
in figure 2 represent the spectrum of the ring and the stub for a finite coupling strength
|t | obtained by matrix diagonalization. As a consequence, the wave function describing a
carrier initially in an (extended) ring state changes its character at the hybridization point
and turns into a wave function which describes a carrier localized on the stub. As we pass
the hybridization point a carrier is thus transferred from the ring into the stub. Separated
in energy by a gap of the order of the coupling energy|t |, there is a second wave function
which describes the transfer of a carrier initially localized on the stub into the ring as we
pass the hybridization point. For weak coupling and if both states are occupied, the net
charge transferred vanishes. Thus for weak coupling the effect of hybridization is only
relevant for the topmost occupied level.

It is the purpose of this work to investigate the suppression of the hybridization when
the Coulomb energy is present. Clearly, if the transfer of the topmost electron from the
ring to the stub leads to a marked deviation of charge distribution away from a locally
electroneutral solution, the charge transfer will effectively be inhibited in the presence of
strong Coulomb interaction. The complication which is encountered in the characterization
of this phenomenon arises from the fact that level hybridization, as it is typically discussed
and shown in figure 2, applies to a non-interacting system. In an interacting system we
can in general not follow single-particle levels. Thus we can discuss the suppression of
hybridization only indirectly by showing that the features in the ground-state energy which
are typical for hybridization in the large-capacitance limit vanish with increasing Coulomb
interaction. Alternatively, we can investigate properties of the ground-state wave function, in
particular the fluctuations of the charge on the ring as a function of the Coulomb interaction.

Therefore we discuss now the behaviour of our system in the case where the charging
energy is non-vanishing. In a first step, the tunnelling energy is neglected. This is the
limit of the standard incoherent Coulomb blockade description [34, 35]. It permits us to
discuss the charging states of the model. Later on we will include the quantum mechanical
transmission to find small corrections to this quasi-classical picture. At zero temperature
the free energy is given by

F(Nr, φ) =
Nr∑
n=1

ε(r)n (φ)+
Ns∑
m=1

ε(s)m +
e2

2C
(Nr −N+r )2. (6)

The operatorN̂r has been replaced by its eigenvalueNr , andNs = N − Nr . For a given
flux φ, the state withNr particles on the ring is realized if its free energy is smaller than
all of the other free energies obtained with different particle numbersN ′r . It is clear that
for very large Coulomb energies the state withNr = N+r for which the electronic charge
exactly compensates the ionic background charge will be the state with minimal free energy.
The Coulomb energy of this state vanishes, whereas for the neighbouring statesN+r ± 1
we have to pay an additional energye2/2C. Thus for large Coulomb energies we have
F(N+r , φ) � F(N+r ± 1, φ). If we now lower the Coulomb energy, eitherF(N+r + 1, φ)
or F(N+r − 1, φ) might become smaller thanF(N+r , φ). Thus a charge transfer into or out
of the ring occurs at the points of energetic degeneracies for which

F(N+r , φ) = F(N+r ± 1, φ). (7)

Using (6) yields

ε
(r)

N+r +1
(φ)− ε(s)

N+s
+ e2

2C
= 0 for ‘+’ (8)
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ε
(s)

N+s +1
− ε(r)

N+r
(φ)+ e2

2C
= 0 for ‘−’ (9)

with N+r +N+s = N . Since the energies of the ring depend on the flux, these equations might
have a solution only for a particular flux±φ∗. At this flux the topmost filled stub state has
an energyε(s)

N+s
which is equal to the first empty state of the ringε(r)

N+r +1
(φ∗) augmented by

the Coulomb energye2/2C. Alternatively the topmost occupied ring stateε(r)
N+r
(φ∗) has an

energy which is equal to the topmost empty stub state augmented by the charging energy. In
the limit of infinite capacitance the fluxφ∗ corresponds to a hybridization point in figure 2.
In the quasi-classical model which neglects phase coherence between ring and stub states
the hybridization region has zero extent: the charge on the ring jumps as the flux is moved
throughφ∗. Quantum mechanically, if phase coherence is taken into account, hybridization
extends over a range of flux which is determined both by the strength of the tunnelling
matrix element|t | and the magnitude of the Coulomb energye2/2C. In the next section
we will describe these transitions in a quantum coherent model in more detail.

By biasing this system via gates [17, 18], one can essentially create an arbitrary charge
imbalance, i.e.Nr 6= N+r . In this case the Hamiltonian (1)–(5) contains additional terms
which describe the coupling of the system to the gate voltage. In such a case the system
can exhibit resonances like in (7) at any strengthe2/2C of the interaction, depending only
on the value of the gate voltage. For a dot connected via a wire to a reservoir, capacitance
fluctuations have been discussed by Gopar, Mello and Büttiker [36] and by Aleiner and
Glazman [37]. For large charging energy this Hamiltonian can be cast into a Kondo-like
form [38]. The Kondo-like features of this problem have been treated by Matveev [39]. As
the system that we are discussing does not contain gates, the resonance condition (7) cannot
be fulfilled for large charging energiese2/2C. Therefore it does not exhibit a Kondo effect.

3. Quantum corrections

In this section we the treat quantum corrections to the classical picture developed above.
Different treatments apply depending on whether or not the charge transfer is resonant or
off-resonant.

3.1. Resonant charge transfer

Hybridization occurs when one of the equations (8), (9) is fulfilled for some±φ∗. Without
loss of generality we may assume that it is equation (9) that is fulfilled. As shown in recent
works [17, 18], in the weak-tunnelling limit it suffices to consider hybridization between a
state in the ring and a state in the stub. Then the Hamiltonian reduces to a 2× 2 matrix

Ĥh =
(
ε
(r)

N+r
(φ) t

t∗ ε
(s)

N+s +1
+ e2/2C

)
+
(N+r −1∑

n=1

ε(r)n (φ)+
N+s∑
m=1

ε(s)m

)
1 (10)

that is easily diagonalized. The eigenvalues ofĤh show a gap around the hybridization
point φ = ±φ∗. It is a typical hybridization effect, and gaps of the same kind also open
up in the one-particle spectrum of the HamiltonianK̂ + 0̂ (equations (1), (2)); see figure 2.
The eigenstates of̂Hh are not eigenstates of the (reduced) particle number operatorsN̂r
(andN̂s): N̂r = N̂h + (N+r − 1)1 with

N̂h =
(

1 0
0 0

)
. (11)
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Aroundφ = ±φ∗ the topmost electron is extended over both subsystems. As a consequence,
we find in the ground state an expectation value of the chargee〈N̂r〉 which is not an integral
multiple of the elementary charge. Furthermore there are strong particle number fluctuations
1N2

r away from the average〈N̂r〉. The particle number fluctuations [18] are determined by

1N2
r =

〈
(N̂r − 〈N̂r〉)2

〉
= |t |2
(ε
(s)

N+s +1
− ε(r)

N+r
(φ)+ e2/2C)2+ 4|t |2

. (12)

Note that at the hybridization point

ε
(s)

N+s +1
− ε(r)

N+r
(φ∗)+ e2/2C = 0

we have the maximal fluctuation(1N2
r )

1/2 = 1/2. The persistent current in the ring is
given byI (φ) = −c ∂F/∂φ, whereF = 〈Ĥ 〉. In the two-level approximation, this reads

I (φ) = −c
∂ε

(r)

N+r

∂φ
〈N̂h〉 + IN+r −1(φ). (13)

−φ /2 −φ
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0 φ φ /2
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Figure 3. The persistent current (solid line) and its fluctuations(1I2)1/2 (long-dashed line) in the
two-level approximation withN+r even and|t | ≈ 0.32w. For comparison, the persistent current
for N+r electrons in the ring and in the absence of hybridization is shown (short-dashed line).
The persistent current vanishes near the hybridization points±φ∗ (=±φ0/6 in the example)
whereas the fluctuations have maxima near the same points, which are of the same order of
magnitude as the persistent current in the absence of hybridization.

The total persistent current consists of a contribution of the topmost ring level with an
average occupation〈N̂h〉 and of the full persistent currentIN+r −1(φ) of all N+r −1 ring states
below the topmost level. This form of the persistent current is a consequence of the weak
coupling between the ring and the stub. In this case all ring levels below the topmost level
are fully occupied and give rise to a persistent current

−c
N+r −1∑
n=1

∂ε(r)n /∂φ = IN+r −1(φ).
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I (φ) vanishes near the hybridization pointsφ = ±φ∗, as discussed in [11]. It is interesting
to observe what happens to the quantum mechanical current fluctuations when the persistent
current itself goes to zero. They are given by [18]

〈1I 2〉 = c2

(
∂ε

(r)

N+r

∂φ

)2

〈1N2
r 〉. (14)

They are maximal nearφ = ±φ∗ whereI (φ) vanishes, and there〈1I 2〉1/2 is of the same
magnitude asI (φ) is away fromφ = ±φ∗. The behaviour ofI (φ) and1I 2 is summarized
in figure 3.

An interesting quantity that is sensitive to hybridization is the flux-induced capacitance
[11, 17, 18]Cφ = e ∂〈N̂r〉/∂φ. This quantity determines the charge increment (in the
ring) in response to a small variation in the flux, much like an electrochemical capacitance
coefficient determines the increment in charge in response to a variation of a gate voltage.
The flux-induced capacitance is a particularly interesting quantity to consider here since
it exhibits a large resonant-like spike at a hybridization pointφ = ±φ∗. In the two-level
approximation considered here, the resonance is determined [17, 18] by

Cφ = −
4|t |2 ∂ε(r)

N+r
/∂φ

[(ε(s)
N+s +1

− ε(r)
N+r
(φ)+ e2/2C)2+ 4|t |2]3/2

. (15)

At resonance,Cφ = (∂ε(r)N+r /∂φ)/2|t |. We will not investigate this quantity here any further
but note thatcCφ has the dimension of conductance and in topological discussions of the
Hall effect it is sometimes taken to be the Hall conductance [40].

If we are not close to a hybridization point, however, the two-level approximation is
insufficient for discussing the quantities of interest here.

3.2. Off-resonant charge transfer

To discuss the transfer of charge away from the resonant points we decompose the
Hamiltonian (1)–(5) asĤ = Ĥ0+ 0̂ and treat0̂ as a perturbation. Note that̂H0 = K̂ + ĤC
contains the Coulomb energy term. We assume in the following that there are no energetic
degeneracies (cf. equation (7)). A complete system of eigenvectors orthonormal toH0 is
constructed as follows. Let|ψ0〉 denote the vacuum (no particles) andIm, Jn index sets
with m, n elements, respectively. The basis reads

|ImJn〉 =
∏
i∈Im

â
†
i

∏
j∈Jn

b̂
†
j |ψ0〉 m+ n = N. (16)

We need only a small subset of them, one of which is the ground state of the uncoupled
system

|0〉 =
N+r∏
i=1

â
†
i

N+s∏
j=1

b̂
†
j |ψ0〉 (17)

with energy

E0 =
N+r∑
i=1

ε
(r)
i (φ)+

N+s∑
j=1

ε
(s)
j . (18)

We will calculate the corrections to the ground-state energy and the particle number
fluctuations to second-order perturbation theory in0̂ [41] (lowest non-vanishing order).
We discuss briefly the states that contribute to the ground state of the coupled system. To
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first order in 0̂, one electron can hop from the stub to the ring or vice versa. We denote
the states created from|0〉 by one electron hopping by|α〉. They are of the form (16), but
they are most easily expressed in terms of the ground state of the uncoupled system

|α〉 =
{
â
†
i b̂j |0〉 with i > N+r , j 6 N+s
b̂
†
j âi |0〉 with i 6 N+r , j > N+s .

(19)

The corresponding eigenvalues are denoted byEα, i.e. Ĥ0|α〉 = Eα|α〉. To second order in
0̂ one has to consider processes that involve two electrons, namely

(i) one electron hopping from the ring to the stub and back, thereby creating an excitation
in the ring,

(ii) one electron hopping from the stub to the ring and back, thereby creating an
excitation in the stub,

(iii) one electron hopping from the ring to the stub, the other one hopping from the stub
to the ring, creating excitations in the ring and in the stub,

(iv) two electrons hopping from the stub to the ring and
(v) two electrons hopping from the ring to the stub.

We use the summary notation|β〉 for the states emerging from the ground state via these
processes. Formally (and in the same order as above)

|β〉 =



â
†
kâl|0〉 with k > N+r , l 6 N+r
b̂
†
kb̂l|0〉 with k > N+s , l 6 N+s
â
†
kâl b̂

†
mb̂n|0〉 with k > N+r , l 6 N+r , m > N+s , n 6 N+s

â
†
kâ
†
l b̂mb̂n|0〉 with k > l > N+r , m < n 6 N+s

b̂†mb̂
†
nâkâl|0〉 with k < l 6 N+r , m > n > N+s

(20)

and for the eigenvalue we writêH0|β〉 ≡ Eβ |β〉.
To second order in̂0, the ground-state energy reads

E = E0+
∑
α

|〈α|0̂|0〉|2
E0− Eα (21)

and the ground state|�〉 of the coupled system

|�〉 =
(

1− 1

2

∑
α

|〈α|0̂|0〉|2
(E0− Eα)2

)
|0〉 +

∑
α

〈α|0̂|0〉
E0− Eα |α〉 +

∑
α,β

〈β|0̂|α〉〈α|0̂|0〉
(E0− Eα)(E0− Eβ) |β〉.

(22)

Summation over|α〉 and |β〉 in (21), (22) does not include the ground state|0〉 of the
uncoupled system. Now we can also calculate the particle number fluctuations

1N2
r = 〈�|N̂2

r |�〉 − 〈�|N̂r |�〉2 =
∑
α

|〈α|0̂|0〉|2
(E0− Eα)2 . (23)

The states|β〉 do not appear in second-order perturbation theory in (21), (23). This is true
for any observable that is diagonal in the basis (16). However, it is necessary to go to
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second order in the perturbation theory to obtain a properly normalized ground state. For
the eigenvaluesEα one finds

Eα − E0 =


e2

2C
+ ε(r)i (φ)− ε(s)j i > N+r , j 6 N+s

e2

2C
+ ε(s)j − ε(r)i (φ) i 6 N+r , j > N+s .

(24)

The sums in (21), (23) can be written more explicitly in terms of the eigen-energies (24).
We obtain double sums:

E0− E =
∑

i>N+r ,j6N+s

|tij |2
e2/2C + ε(r)i (φ)− ε(s)j

+
∑

i6N+r ,j>N+s

|tij |2
e2/2C + ε(s)j − ε(r)i (φ)

(25)

1N2
r =

∑
i>N+r ,j6N+s

|tij |2
(e2/2C + ε(r)i (φ)− ε(s)j )2

+
∑

i6N+r ,j>N+s

|tij |2
(e2/2C + ε(s)j − ε(r)i (φ))2

(26)

that can be interpreted as the effect of an electroncoherentlyhopping from the stub into
a virtual state in the ring and back (the first sum in the equations (25), (26) or vice
versa (second sum). We postpone the explicit evaluation of the above sums until after
the discussion of the ensemble.

4. The ensemble

There is little purpose in attempting to characterize an individual sample. If the charging
energye2/2C is small, the critical fluxφ∗ is very sensitive to changes in the particle densities
Nr/Lr andNs/Ls . For e2/2C = 0 the critical flux covers the entire interval [0, φ0/2] when
the particle densities in the ring and in the stub are varied independently by±1/Lr and
±1/Ls , respectively. Many quantities of interest depend crucially on the number of particles
in the ring. Let us mention only the persistent current [11]. Any such quantity will depend
on φ∗ which itself is strongly sample dependent. To extract more general results we want
to consider an ensemble of rings connected to stubs and to calculate ensemble averages.
The construction of an ensemble is thus the next task.

We consider an ensemble of systems having different ring circumferences and stub
lengths, but with constant total particle numberN , a ‘strongly canonical’ ensemble according
to the classification of Kamenev and Gefen [33]. The spectra in the ring and the stub depend
on the circumference of the ringLr and the length of the stubLs (see equations (3), (4)).
Therefore the topmost occupied energy levels of the ring and the stub shift whenLr andLs
are varied. We describe this shift by the difference1ε between the energy of the topmost
occupied ring state at zero flux and the topmost occupied stub level. For consistency with the
derivation of the Coulomb energy leading to equation (5), the background charge densities
Nr/Lr in the ring andNs/Ls in the stub are required to be the same for all ensemble
members. The double constraint of constant particle number and constant densities puts
strong limits on the possible variations ofLr andLs . These constraints require that the
topmost energy levels may vary at most byw in energy for the ring and by1 for the stub.
It follows that1ε can vary at most by±(w + 1) around 0. Thus1ε lies in an interval
of length 2(w + 1). We consider an ensemble with a uniform distribution of1ε in this
interval. From figure 2, one may see that ate2/2C → 0 and if1ε varies between 0 and
max{w,1}, |φ∗| does indeed assume any value between 0 andφ0/2.

In the limit of vanishing interaction strength and in the limit of a very long stub we
show below that our system behaves effectively like a ring coupled to a reservoir. Hence
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we will refer to this limit as the ‘grand canonical’ limit. On the other hand if the stub is
very short our system behaves, regardless of the interaction strength, in a canonical manner.
Hence we call the limit of a short stub also the canonical limit.

In order to differentiate between quantum mechanical expectation values and ensemble
averages, we denote the latter by an overline (e.g.x) and the former by angular brackets〈x〉.

5. Persistent current

It is instructive to compare the Fourier coefficientsIn of the average persistent current

I (φ) =
∞∑
n=1

In sin 2πn
φ

φ0
(27)

with the Fourier coefficientsI (0)n of the persistent currentI (0)(φ) of an isolated ring
containingN+r non-interacting fermions. TheI (0)n are of the form

I (0)n =
2ew

h

1

nπ

{
(−1)n for N+r odd

1 for N+r even.
(28)

Note that the sign of theI (0)n depends on the parity of the particle numberN+r for odd n,
whereas for evenn it does not. Therefore, there is also an important difference between
the averaged Fourier coefficientsIn for odd and evenn, respectively. We investigate the
Fourier coefficientsIn normalized with respect to theI (0)n :

in = In

I
(0)
n

(29)

and in particulari1 and i2. The behaviour of these two in the limitse2/C → 0 and
e2/C →∞ is representative for allin with odd and evenn, respectively.

b

2e /C
2w+∆∆

0

1
a

2e /C
2w+∆∆

0

1

1

Figure 4. Normalized Fourier coefficients of the persistent current. The full lines stand for
i1, the dashed ones fori2. (a) shows the results for a stub that is much shorter than the ring
circumference (Lr = 10Ls or equivalently1 = 10w). The inset shows the behaviour ofi1,2
in the crossover region1 < e2/C < 2w + 1. (b) shows the results for a stub that is much
longer than the ring circumference:w = 101. In both casesi1 = i2 = 1 for e2/C > 2w +1.
For e2/C 6 1 one finds thati1 goes linearly to zero whereasi2 = constant in both (a) and (b).
Note that in the case (b) of the long stub, the second Fourier coefficient is very small (i2 � 1)
for e2/C → 0.
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We obtain theIn (and thus thein) by calculating first the average persistent current
I (φ) as described in section 4 and then extracting them by Fourier transformation. The first
normalized Fourier coefficienti1 vanishes linearly fore2/C → 0 (in fact, for e2/C < 1)
and goes to 1 fore2/C > 2w+1. For i2 the situation is a little more complicated. It goes
to 1 ase2/C > 2w +1. For small Coulomb energies, however,

i2 = 1

w +1 for
e2

C
< 1 (30)

i.e. for w � 1 one hasI2 � I
(0)
2 , whereas forw � 1 we find I2 ≈ I (0)2 . The results are

sketched in figure 4.
We interpret these findings as follows. Fore2/C large enough, the average persistent

current becomes insensitive to the side stub. This is true for short as well as for long
stubs. In the sense of the ‘grand canonical’ and ‘canonical’ limits, introduced in section 4,
this indicates that the difference between canonical and grand canonical ensembles is less
important for interacting than for non-interacting systems (cf. also [15]). Fore2/C → 0
on the other hand, there is a difference between short and long stubs. If the stub is long,
one hasw � 1 and I2 � I

(0)
2 . As I1 vanishes in any case in this limit, the average

persistent current vanishes, too. This is the behaviour predicted in [42] for a ring in the
grand canonical ensemble, i.e. an open ring. Ifw � 1, that is, for a short stub,i2 does
not vanish ase2/C approaches zero but tends to a finite limit which in turn means that the
persistent current becomes(φ0/2)-periodic. This is what one finds for a canonical (closed)
ensemble of clean rings containing non-interacting fermions [32, 42]. There is a crossover
from (φ0/2)-periodicity toφ0-periodicity in the energy interval 0< e2/C < 1.

Let us point out that in the limite2/C → 0 the average persistent current nearφ = 0 is
positive (it may be very small, though, for small1, as discussed above), sinceI1 vanishes,
and I2 is always positive. Thus, in the absence of Coulomb interactions, the ensemble
shows a paramagnetic response, a feature not observed in the experiment [12]. In contrast,
in our system, in the case of strong Coulomb interactions, the response of the ensemble can
be either diamagnetic or paramagnetic.

We have not taken into account the effect of quantum fluctuations on the persistent
current yet. This is done by taking the derivative of (25) with respect toφ. The correction
is of order |t |2 with respect toI (φ). Even for e2/C > 2w + 1 it causes only small
deviations from the quasi-classical resultin = 1. The conclusions concerning the persistent
current drawn from the quasi-classical picture remain valid. A stronger effect is seen in the
particle number fluctuations which we will discuss now.

6. Particle number fluctuations

In the picture of the incoherent Coulomb blockade (no hopping,0̂ = 0), the particle number
Nr in the ring can be determined using the conditions for incoherent charge transfer (8),
(9). Figure 5 shows the domains with definiteNr in the flux–energy plane. The particle
number fluctuations can be read off this picture:

(1N2
r )inc ≡ N2

r −Nr
2 = max

{
0, 1−

(
e2

C
+1+ 2w

|φ|
φ0/2

)/
2(w +1)

}
(31)

the index ‘inc’ referring to the incoherent Coulomb blockade model. This formula holds
for N+r odd; forN+r even, the absolute value of the flux|φ| is replaced byφ0/2− |φ|.

We shall discuss two cases, depending on the charging energye2/C (and onφ).
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∆ε

N
+
rN

+
r +1+3

N
+
r+2 N

+
r N

+
r-2

φ

N
+
r-4

N
+
r-3N

+
r-1

21

Figure 5. Domains of integer charge states in the ring forN+r odd, in the flux–energy plane.
The boundaries of the charge states are indicated by solid lines. The marks on theφ-axis are at
nφ0/2, n = ±1,±2, . . .. The scale on the abscissa is indicated by the lines 1 and 2, where the
length of 1 is1+ e2/C, and the length of 2 is 2w +1+ e2/C.

(i) If e2/C is sufficiently small we have(1N2
r )inc > 0. There is real hopping and

equations (8), (9) are fulfilled for some ensemble member. We point out that in this
range ofe2/C, quantum contributions to the particle number fluctuations given by equation
(31) are irrelevant. If we consider for a moment an individual member of the ensemble,
quantum fluctuations are very important (of order 1 in|t |) near a resonance; see equation
(12). However, the width in energy of the resonance is only of order|t |. Thus the quantum
contribution of such a resonance to the ensemble average is only of order|t |/(2w+1)� 1.

(ii) There is only virtual hopping, equations (8) and (9) are never fulfilled, and
(1N2

r )inc = 0. We can apply the second-order perturbation theory results from section
3.2, giving (26). The sums can be explicitly evaluated, e.g. in a symmetric narrow-band
model with band width 23. We assumeε(r)

N+r
(φ), ε

(s)

N+s
� 3� w,1 so that we can linearize

the spectra:

ε
(r)

N+r +k(φ) =
 ε

(r)

N+r
(φ)+ kw if k is even

ε
(r)

N+r +1
(φ)+ (k − 1)w if k is odd

(32)

ε
(s)

N+s +l = ε
(s)

N+s
+ l1. (33)

To evaluate the expression (26) we shall replace the sums by integrals and set|tij |2 =
constant= |t |2. With these specifications we obtain

1N2
r ≈


2|t |2
w1

log

(
3

e2/2C

)
+O

(
1

3

)
3� e2/2C � w,1

2|t |2
w1

(
3

e2/2C

)2

+O

((
e2

2C

)−3)
e2/2C � 3.

(34)

Thus the result depends crucially on the relation of the band width3 to the charging energy.
It remains to take the ensemble average, but equations (34) do not depend on the ensemble
member; thus1N2

r = 1N2
r .

The behaviour of the ensemble-averaged particle number fluctuations as a function of
e2/C is summarized in figure 6. The incoherent fluctuations, associated with different
particle numbersNr in the ring in different ensemble members, and thus associated with
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resonant charge transfer, vanish linearly for increasing charging energy as discussed in (i)
above. In the picture of the incoherent Coulomb blockade, a large enough charging energy
therefore suppresses the hybridization completely. A purely quantum mechanical signature
of hybridization, however, survives far into the off-resonant region, as demonstrated by
equations (34).

0

0.25

0.5

0 0.5 1 1.5
e /C2

∆N
r2

Figure 6. Particle number fluctuations as a function ofe2/C. The result in the incoherent
Coulomb blockade model(1N2

r )inc (dashed line) and the off-resonant result1N2
r for e2/C >

2w + 1 (solid line), continued beyond its range of validity (short-dashed line) are shown for
φ = ±φ0/4, |t | = 0.02, w = 0.1, 1 = 0.2. All of the energies are given in units of the band
width 3.

7. Potential fluctuations

The electrostatic potential on the ring is connected to the particle number on the ring via

Ur = Qr

C
= e(N+r −Nr)

C
. (35)

Replacingc-numbers by operators, we find that it exhibits therefore fluctuations related to
the particle number fluctuations:

1U2
r ≡ 〈Ûr

2〉 − 〈Ûr〉2 = 4

e2

(
e2

2C

)2

1N2
r . (36)

For intermediate charging energiesw,1� e2/2C � 3, we find potential fluctuations that
aregrowing with the charging energy:

1U2
r =

8|t |2
e2w1

(
e2

2C

)2

log

(
23

e2/2C

)
(37)

whereas for higher charging energiese2/2C � 3 they tend towards a constant:

1U2
r =

8|t |232

e2w1
. (38)

Within the range of validity of the perturbation theory [41],|t | � w,1, the fluctuations in
the single-particle spectrum induced by potential fluctuationse(1U2

r )
1/2 are in both cases

much smaller than the charging energye2/2C, but not necessarily smaller than the level
width w and the level spacing in the stub1.
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8. Conclusions

We present an investigation of the competing effects of the Coulomb interaction and the
hybridization of the spectra of two coupled subsystems. The model considered consists of a
ring penetrated by a magnetic flux and coupled to a side branch. We discuss single systems
as well as a canonical ensemble. We identify quantities that are sensitive to hybridization,
namely the persistent current (equations (13), (14) and figure 3) and the particle number
fluctuations in a subsystem (12) in order to identify hybridization effects not only in a single-
but also in a many-particle problem. We show that the Coulomb interaction suppresses
hybridization, abruptly in the standard incoherent Coulomb blockade model (equation (31)
and figure 4) and smoothly when quantum effects are taken into account (equation (34)).
Interestingly, even though our system is strongly canonical, for small charging energies it
shows both the behaviour of a grand canonical ensemble of rings for a large side branch
and the behaviour of a canonical ensemble of rings for a short side branch. Our results
suggest a number of experiments in which either the persistent current (magnetization) or
the charge fluctuations are measured. Such experiments can be implemented in mesoscopic
structures or in large benzene-like molecules with side branches.
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